Technical Teams

Data Engineer

You’ll be the boss. Sifflet gives you the capabilities and oversight to manage your data stack like never before, faster than you ever thought possible.

Troubleshoot and Debug

Sifflet makes troubleshooting and debugging faster, more efficient and more effective thanks to pipeline failure or data anomaly alerts and rich contextual information.

Pipeline Performance Optimization

Pipelines power your data stack. Sifflet helps you monitor pipeline performance and get insight into bottlenecks and inefficient transformations.

Quality Assurance

Uplevel your data quality thanks to automated quality checks and validations and custom rules to ensure data integrity.

More Productive. More Powerful.

Sifflet augments your productivity by giving you end-to-end visibility into your architecture, assets, and pipelines. AI-powered monitoring sends you the right alerts, at the right time, so you can triage efficiently and effectively. And advanced lineage capabilities enable you to get to resolution faster.

Built for Business.

Sifflet helps you collaborate better with users on the business end. Give your data consumers self-serve tools, such as smart monitoring setup that leverages large language models and embed monitoring alerts into their data products.

See Value From Day One.

Sifflet connects to hundreds of tools already in your stack and offers out of the box monitors and tooling so you can start seeing value from day one.

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data
"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist
"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam
" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios
"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links
"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Frequently asked questions

What kind of monitoring should I set up after migrating to the cloud?
After migration, continuous data quality monitoring is a must. Set up real-time alerts for data freshness checks, schema changes, and ingestion latency. These observability tools help you catch issues early and keep your data pipelines running smoothly.
What future observability goals has Carrefour set?
Looking ahead, Carrefour plans to expand monitoring to more than 1,500 tables, integrate AI-driven anomaly detection, and implement data contracts and SLA monitoring to further strengthen data governance and accountability.
What is data distribution deviation and why should I care about it?
Data distribution deviation happens when the distribution of your data changes over time, either gradually or suddenly. This can lead to serious issues like data drift, broken queries, and misleading business metrics. With Sifflet's data observability platform, you can automatically monitor for these deviations and catch problems before they impact your decisions.
What makes data observability different from traditional monitoring tools?
Traditional monitoring tools focus on infrastructure and application performance, while data observability digs into the health and trustworthiness of your data itself. At Sifflet, we combine metadata monitoring, data profiling, and log analysis to provide deep insights into pipeline health, data freshness checks, and anomaly detection. It's about ensuring your data is accurate, timely, and reliable across the entire stack.
Can the Sifflet AI Assistant help non-technical users with data quality monitoring?
Absolutely! One of our goals is to democratize data observability. The Sifflet AI Assistant is designed to be accessible to both technical and non-technical users, offering natural language interfaces and actionable insights that simplify data quality monitoring across the organization.
Can I learn about real-world results from Sifflet customers at the event?
Yes, definitely! Companies like Saint-Gobain will be sharing how they’ve used Sifflet for data observability, data lineage tracking, and SLA compliance. It’s a great chance to hear how others are solving real data challenges with our platform.
Why is combining data catalogs with data observability tools the future of data management?
Combining data catalogs with data observability tools creates a holistic approach to managing data assets. While catalogs help users discover and understand data, observability tools ensure that data is accurate, timely, and reliable. This integration supports better decision-making, improves data reliability, and strengthens overall data governance.
Who should be the first hire on a new data team?
If you're just starting out, look for someone with 'Full Data Stack' capabilities, like a Data Analyst with strong SQL and business acumen or a Data Engineer with analytics skills. This person can work closely with other teams to build initial pipelines and help shape your data platform. As your needs evolve, you can grow your team with more specialized roles.
Still have questions?