Executives

Data Leader

Transform your data and analytics strategy and pave the way for AI by upleveling data quality, trust, reliability and overall team efficiency.

Data Quality and Trust

Sifflet makes it possible to establish trust in data across your organization thanks to real time monitoring of data quality, completeness, and accuracy.

Operational Efficiency

Increase your team’s operational efficiency. Sifflet reduces the time your data teams spend on manual quality checks and troubleshooting. It also enables proactive issue resolution before problems cause downstream systems.

Risk and Compliance Management

Manage data risk and compliance. Sifflet helps you document and monitor data access patterns and potential security risks.

Drive Innovation and Enable AI

Sifflet’s data observability platform delivers the performance you need to keep data quality and reliability at peak, paving the way for game-changing digital capabilities and products.

Augment Your Team’s Productivity and Effectiveness

Data engineers, data analysts and data scientists are critical to your business’s most strategic work. Sifflet augments their productivity by giving them back hundreds of hours spent on mundane reliability or accuracy tasks. Everyone’s more effective with data observability.

See Value From Day One

Sifflet connects to hundreds of tools already in your stack and offers out of the box monitors and tooling so you can start seeing value from day one.

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data
"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist
"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam
" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios
"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links
"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Frequently asked questions

How can business teams benefit from using Sifflet Insights?
Business teams can access data quality insights directly within their BI dashboards, reducing their reliance on data engineers. This democratizes data observability and empowers teams to make confident, data-driven decisions with full transparency into data lineage and reliability.
Why is a centralized Data Catalog important for data reliability and SLA compliance?
A centralized Data Catalog like Sifflet’s plays a key role in ensuring data reliability and SLA compliance by offering visibility into asset health, surfacing incident alerts, and providing real-time metrics. This empowers teams to monitor data pipelines proactively and meet service level expectations more consistently.
Can data observability support better demand forecasting for retailers?
Absolutely. By integrating historical sales, real-time transactions, and external data sources like weather or social trends, data observability platforms enhance forecast accuracy. They use machine learning to evaluate and adjust predictions, helping retailers align inventory with actual consumer demand more effectively.
What are the main challenges of implementing Data as a Product?
Some key challenges include ensuring data privacy and security, maintaining strong data governance, and investing in data optimization. These areas require robust monitoring and compliance tools. Leveraging an observability platform can help address these issues by providing visibility into data lineage, quality, and pipeline performance.
Is there a networking opportunity with the Sifflet team at Big Data Paris?
Yes, we’re hosting an exclusive after-party at our booth on October 15! Come join us for great conversations, a champagne toast, and a chance to connect with data leaders who care about data governance, pipeline health, and building resilient systems.
Why is it important to align KPIs with data team objectives?
Aligning KPIs with your data team’s goals is essential for clarity and motivation. When everyone knows what success looks like and how it’s measured, it creates a sense of purpose. Tools that support data quality monitoring and metrics collection can help track those KPIs effectively and ensure your team is on the right path.
What makes data observability different from traditional monitoring tools?
Traditional monitoring tools focus on infrastructure and application performance, while data observability digs into the health and trustworthiness of your data itself. At Sifflet, we combine metadata monitoring, data profiling, and log analysis to provide deep insights into pipeline health, data freshness checks, and anomaly detection. It's about ensuring your data is accurate, timely, and reliable across the entire stack.
What are the main differences between ETL and ELT for data integration?
ETL (Extract, Transform, Load) transforms data before storing it, while ELT (Extract, Load, Transform) loads raw data first, then transforms it. With modern cloud storage, ELT is often preferred for its flexibility and scalability. Whichever method you choose, pairing it with strong data pipeline monitoring ensures smooth operations.
Still have questions?