Redshift
Integrate Sifflet with Redshift to access end-to-end lineage, monitor assets like Spectrum tables, enrich metadata, and gain insights for optimized data observability.
Used by




Exhaustive metadata
Sifflet leverages Redshift's internal metadata tables to retrieve information about your assets and enhance it with Sifflet-generated insights.


End-to-end lineage
Have a complete understanding of how data flows through your platform via end-to-end lineage for Redshift.
Redshift Spectrum support
Sifflet can monitor external tables via Redshift Spectrum, allowing you to ensure the quality of data stored in other systems like S3.


Frequently asked questions
What role does Sifflet play in Etam’s data governance efforts?
Sifflet supports Etam by embedding data governance into their workflows through automated monitoring, anomaly detection, and data lineage tracking. This gives the team better visibility into their data pipelines and helps them troubleshoot issues quickly without slowing down innovation.
What impact did Sifflet have on fostering a data-driven culture at Meero?
Sifflet’s intuitive UI and real-time data observability dashboards empowered even non-technical users at Meero to understand data health. This transparency helped build trust in data and promoted a stronger data-driven culture across the organization.
What does it mean to treat data as a product?
Treating data as a product means prioritizing its reliability, usability, and trustworthiness—just like you would with any customer-facing product. This mindset shift is driving the need for observability platforms that support data governance, real-time metrics, and proactive monitoring across the entire data lifecycle.
How can Sifflet help prevent data disasters like the ones mentioned in the blog?
We built Sifflet to be your data stack's early warning system. Our observability platform offers automated data quality monitoring, anomaly detection, and root cause analysis, so you can identify and resolve issues before they impact your business. Whether you're scaling your pipelines or preparing for AI initiatives, we help you stay in control with confidence.
What exactly is data quality, and why should teams care about it?
Data quality refers to how accurate, complete, consistent, and timely your data is. It's essential because poor data quality can lead to unreliable analytics, missed business opportunities, and even financial losses. Investing in data quality monitoring helps teams regain trust in their data and make confident, data-driven decisions.
Why is data observability becoming more important than just monitoring?
As data systems grow more complex with cloud infrastructure and distributed pipelines, simple monitoring isn't enough. Data observability platforms like Sifflet go further by offering data lineage tracking, anomaly detection, and root cause analysis. This helps teams not just detect issues, but truly understand and resolve them faster—saving time and avoiding costly outages.
How does Sifflet help close the observability gap for Airbyte pipelines?
Great question! Sifflet bridges the observability gap for Airbyte by using our Declarative Lineage API and a custom Python script. This allows you to capture complete data lineage from Airbyte and ingest it into Sifflet, giving you full visibility into your pipelines and enabling better root cause analysis and data quality monitoring.
How does Flow Stopper improve data reliability for engineering teams?
By integrating real-time data quality monitoring directly into your orchestration layer, Flow Stopper gives Data Engineers the ability to stop the flow when something looks off. This means fewer broken pipelines, better SLA compliance, and more time spent on innovation instead of firefighting.
Want to try Sifflet on your Redshift Stack
Give it a try now!