Monitoring at Scale

Coverage without compromise.

Grow monitoring coverage intelligently as your stack scales and do more with less resources thanks to tooling that reduces maintenance burden, improves signal-to-noise, and helps you understand impact across interconnected systems.

Don’t Let Scale Stop You

As your stack and data assets scale, so do monitors. Keeping rules updated becomes a full-time job, and tribal knowledge about monitors gets scattered, so teams struggle to sunset obsolete monitors while adding new ones. No more with Sifflet.

  • Optimize monitoring coverage and minimize noise levels with AI-powered suggestions and supervision that adapt dynamically
  • Implement programmatic monitoring set up and maintenance with Data Quality as Code (DQaC)
  • Automated monitor creation and updates based on data changes
  • Centralized monitor management reduces maintenance overhead

Get Clear and Consistent

Maintaining consistent monitoring practices across tools, platforms, and internal teams that work across different parts of the stack isn’t easy. Sifflet makes it a breeze.

  • Set up consistent alerting and response workflows
  • Benefit from unified monitoring across your platforms and tools
  • Use automated dependency mapping to show system relationships and benefit from end-to-end visibility across the entire data pipeline

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data
"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist
"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam
" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios
"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links
"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Discover more title goes here

Frequently asked questions

How does Sifflet support data quality monitoring at scale?
Sifflet makes data quality monitoring scalable with features like auto-coverage, which automatically generates monitors across your datasets. Whether you're working with Snowflake, BigQuery, or other platforms, you can quickly reach high monitoring coverage and get real-time alerts via Slack, email, or MS Teams to ensure data reliability.
What’s the difference between static and dynamic freshness monitoring modes?
Great question! In static mode, Sifflet checks whether data has arrived during a specific time slot and alerts you if it hasn’t. In dynamic mode, our system learns your data arrival patterns over time and only sends alerts when something truly unexpected happens. This helps reduce alert fatigue while maintaining high standards for data quality monitoring.
Is Sifflet Insights easy to set up with my existing tools?
Yes, onboarding is seamless. You can quickly integrate Sifflet Insights with your existing BI tools and start receiving real-time metrics and alerts. It’s designed to enhance efficiency and support incident response automation without disrupting your current workflows.
What does it mean to treat data as a product?
Treating data as a product means prioritizing its reliability, usability, and trustworthiness—just like you would with any customer-facing product. This mindset shift is driving the need for observability platforms that support data governance, real-time metrics, and proactive monitoring across the entire data lifecycle.
How does Sifflet support data documentation in Airflow?
Sifflet centralizes documentation for all your data assets, including DAGs, models, and dashboards. This makes it easier for teams to search, explore dependencies, and maintain strong data governance practices.
Why is data lineage so critical in a data observability strategy?
Data lineage is the backbone of any strong data observability strategy. It helps teams trace data issues to their source by showing how data flows from ingestion to dashboards and models. With lineage, you can assess the impact of changes, improve collaboration across teams, and resolve anomalies faster. It's especially powerful when combined with anomaly detection and real-time metrics for full visibility across your pipelines.
What makes Sifflet's approach to data pipeline monitoring unique?
We take a holistic, end-to-end approach to data pipeline monitoring. By collecting telemetry across the entire data stack and automatically tracking field-level data lineage, we empower teams to quickly identify issues and understand their downstream impact, making incident response and resolution much more efficient.
How does data observability complement a data catalog?
While a data catalog helps you find and understand your data, data observability ensures that the data you find is actually reliable. Observability tools like Sifflet monitor the health of your data pipelines in real time, using features like data freshness checks, anomaly detection, and data quality monitoring. Together, they give you both visibility and trust in your data.
Still have questions?