BigQuery
Sifflet icon

Google BigQuery

Integrate Sifflet with BigQuery to monitor all table types, access field-level lineage, enrich metadata, and gain actionable insights for an optimized data observability strategy.

Used by

Metadata-based monitors and optimized queries

Sifflet leverages BigQuery's metadata APIs and relies on optimized queries, ensuring minimal costs and efficient monitor runs.

Usage and BigQuery metadata

Get detailed statistics about the usage of your BigQuery assets, in addition to various metadata (like tags, descriptions, and table sizes) retrieved directly from BigQuery.

Field-level lineage

Have a complete understanding of how data flows through your platform via field-level end-to-end lineage for BigQuery.

External table support

Sifflet can monitor external BigQuery tables to ensure the quality of data in other systems like Google Cloud BigTable and Google Cloud Storage

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data
"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist
"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam
" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios
"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links
"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Frequently asked questions

How can business teams benefit from using Sifflet Insights?
Business teams can access data quality insights directly within their BI dashboards, reducing their reliance on data engineers. This democratizes data observability and empowers teams to make confident, data-driven decisions with full transparency into data lineage and reliability.
What impact did Sifflet have on fostering a data-driven culture at Meero?
Sifflet’s intuitive UI and real-time data observability dashboards empowered even non-technical users at Meero to understand data health. This transparency helped build trust in data and promoted a stronger data-driven culture across the organization.
Why is data lineage important for GDPR compliance?
Data lineage is essential for GDPR because it helps you trace personal data from source to destination. This means you can see where PII is stored, how it flows through your data pipelines, and which reports or applications use it. With this visibility, you can manage deletion requests, audit data usage, and ensure data governance policies are enforced consistently.
How does Flow Stopper support root cause analysis and incident prevention?
Flow Stopper enables early anomaly detection and integrates with your orchestrator to halt execution when issues are found. This makes it easier to perform root cause analysis before problems escalate and helps prevent incidents that could affect business-critical dashboards or KPIs.
What role does real-time data play in modern analytics pipelines?
Real-time data is becoming a game-changer for analytics, especially in use cases like fraud detection and personalized recommendations. Streaming data monitoring and real-time metrics collection are essential to harness this data effectively, ensuring that insights are both timely and actionable.
What exactly is the modern data stack, and why is it so popular now?
The modern data stack is a collection of cloud-native tools that help organizations transform raw data into actionable insights. It's popular because it simplifies data infrastructure, supports scalability, and enables faster, more accessible analytics across teams. With tools like Snowflake, dbt, and Airflow, teams can build robust pipelines while maintaining visibility through data observability platforms like Sifflet.
Can Sifflet Insights help with data pipeline monitoring?
Absolutely! Sifflet Insights connects to your broader observability platform, giving you visibility into data pipeline health right from your BI dashboards. It helps track incidents, monitor data freshness, and detect anomalies before they impact your business decisions.
What makes debugging data pipelines so time-consuming, and how can observability help?
Debugging complex pipelines without the right tools can feel like finding a needle in a haystack. A data observability platform simplifies root cause analysis by providing detailed telemetry and pipeline health dashboards, so you can quickly identify where things went wrong and fix them faster.
Still have questions?

Want to try Sifflet on your BigQuery Stack?

Get in Touch Now!