Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

What are some signs that our organization might need better data observability?
If your team struggles with delayed dashboards, inconsistent metrics, or unclear data lineage, it's likely time to invest in a data observability solution. At Sifflet, we even created a simple diagnostic to help you assess your data temperature. Whether you're in a 'slow burn' or a 'five alarm fire' state, we can help you improve data reliability and pipeline health.
What strategies can help smaller data teams stay productive and happy?
For smaller teams, simplicity and clarity are key. Implementing lightweight data observability dashboards and using tools that support real-time alerts and Slack notifications can help them stay agile without feeling overwhelmed. Also, defining clear roles and giving access to self-service tools boosts autonomy and satisfaction.
How does Sifflet support data quality monitoring at scale?
Sifflet makes data quality monitoring scalable with features like auto-coverage, which automatically generates monitors across your datasets. Whether you're working with Snowflake, BigQuery, or other platforms, you can quickly reach high monitoring coverage and get real-time alerts via Slack, email, or MS Teams to ensure data reliability.
Why are containers such a big deal in modern data infrastructure?
Containers have become essential in modern data infrastructure because they offer portability, faster deployments, and easier scalability. They simplify the way we manage distributed systems and are a key component in cloud data observability by enabling consistent environments across development, testing, and production.
How does data observability improve the value of a data catalog?
Data observability enhances a data catalog by adding continuous monitoring, data lineage tracking, and real-time alerts. This means organizations can not only find their data but also trust its accuracy, freshness, and consistency. By integrating observability tools, a catalog becomes part of a dynamic system that supports SLA compliance and proactive data governance.
How does Sifflet support data quality monitoring for business metrics?
Sifflet uses ML-based data quality monitoring to detect anomalies in business metrics and alert users in real time. This enables both data and business teams to quickly investigate issues, perform root cause analysis, and maintain trust in their data.
How can I better manage stakeholder expectations for the data team?
Setting clear priorities and using a centralized pipeline orchestration visibility tool can help manage expectations across the organization. When stakeholders understand what the team can deliver and when, it builds trust and reduces pressure on your team, leading to a healthier and happier work environment.
Where can I find Sifflet at Big Data LDN 2024?
You can find the Sifflet team at Booth Y640 during Big Data LDN on September 18-19. Stop by to learn more about our data observability platform and how we’re helping organizations like the BBC and Penguin Random House improve their data reliability.
Still have questions?