Data User

Take control of your decisions. Sifflet gives business users unmatched clarity and trust in their data, driving smarter actions with ease.

Data Freshness and Reliability

Sifflet gives data users visibility into when data was last updated, and alerts when source data changes unexpectedly, so you’ll always know the status of your numbers.

Self-Service Troubleshooting

Vetting data quality has often been tough. Sifflet makes it easier and simpler to trace unusual values thanks to data lineage, and get historical context of data changes and updates.

Analysis Confidence

You’ll be able to analyze numbers with confidence thanks to knowledge of who owns and maintains different data assets and verify data accuracy before sharing insights.

Superior Insights. Check.

Sifflet makes it easier to gain strategic insights about your market, products, and customers. By ensuring the highest levels of data quality, your teams can make the best possible strategic decisions for your company, unlocking new levels of performance that help you compete in the age of AI.

Never Question Your Numbers Again.

Sifflet gives you the ultimate confidence in your data products and dashboards. By ensuring that your data is monitored and triaged night and day, you can always be sure of the freshness, accuracy, and quality of your numbers.

See Value From Day One.

Sifflet connects to hundreds of tools already in your stack and offers out-of-the-box monitors and tooling so you can start seeing value from day one.

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
Contact Us

Frequently asked questions

Why is data observability important during the data integration process?
Data observability is key during data integration because it helps detect issues like schema changes or broken APIs early on. Without it, bad data can flow downstream, impacting analytics and decision-making. At Sifflet, we believe observability should start at the source to ensure data reliability across the whole pipeline.
Will Sifflet cover any upcoming trends in data observability?
For sure! Our CEO, Salma Bakouk, will be speaking about the top data trends to watch in 2025, including how GenAI and advanced anomaly detection are shaping the future of observability platforms. You’ll walk away with actionable insights for your data strategy.
Can Sifflet help with data quality monitoring directly from the Data Catalog?
Absolutely! Sifflet integrates data quality monitoring into its Data Catalog, allowing users to define and view data quality checks right alongside asset metadata. This gives teams real-time insights into data reliability and helps build trust in the assets they’re using for decision-making.
How does Sifflet’s dbt Impact Analysis improve data pipeline monitoring?
By surfacing impacted tables, dashboards, and other assets directly in GitHub or GitLab, Sifflet’s dbt Impact Analysis gives teams real-time visibility into how changes affect the broader data pipeline. This supports better data pipeline monitoring and helps maintain data reliability.
How does data observability fit into a modern data platform?
Data observability is a critical layer of a modern data platform. It helps monitor pipeline health, detect anomalies, and ensure data quality across your stack. With observability tools like Sifflet, teams can catch issues early, perform root cause analysis, and maintain trust in their analytics and reporting.
How is AI shaping the future of data observability?

AI enhances data observability with advanced anomaly detection, predictive analytics, and automated root cause analysis. This helps teams identify and resolve issues faster while reducing manual effort. Have a look at how Sifflet is leveraging AI for better data observability here

What is data observability and why is it important for modern data teams?
Data observability is the ability to monitor and understand the health of your data across the entire data stack. As data pipelines become more complex, having real-time visibility into where and why data issues occur helps teams maintain data reliability and trust. At Sifflet, we believe data observability is essential for proactive data quality monitoring and faster root cause analysis.
How does data quality monitoring help improve data reliability?
Data quality monitoring is essential for maintaining trust in your data. A strong observability platform should offer features like anomaly detection, data profiling, and data validation rules. These tools help identify issues early, so you can fix them before they impact downstream analytics. It’s all about making sure your data is accurate, timely, and reliable.