Business Teams

Data User

Take control of your decisions. Sifflet gives business users unmatched clarity and trust in their data, driving smarter actions with ease.

Data Freshness and Reliability

Sifflet gives data users visibility into when data was last updated, and alerts when source data changes unexpectedly, so you’ll always know the status of your numbers.

Self-Service Troubleshooting

Vetting data quality has often been tough. Sifflet makes it easier and simpler to trace unusual values thanks to data lineage, and get historical context of data changes and updates.

Analysis Confidence

You’ll be able to analyze numbers with confidence thanks to knowledge of who owns and maintains different data assets and verify data accuracy before sharing insights.

Superior Insights. Check.

Sifflet makes it easier to gain strategic insights about your market, products, and customers. By ensuring the highest levels of data quality, your teams can make the best possible strategic decisions for your company, unlocking new levels of performance that help you compete in the age of AI.

Never Question Your Numbers Again.

Sifflet gives you the ultimate confidence in your data products and dashboards. By ensuring that your data is monitored and triaged night and day, you can always be sure of the freshness, accuracy, and quality of your numbers.

See Value From Day One.

Sifflet connects to hundreds of tools already in your stack and offers out-of-the-box monitors and tooling so you can start seeing value from day one.

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist
"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam
" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios
"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links
"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Frequently asked questions

What is “data-quality-as-code”?

Data-quality-as-code (DQaC) allows you to programmatically define and enforce data quality rules using code. This ensures consistency, scalability, and better integration with CI/CD pipelines. Read more here to find out how to leverage it within Sifflet

Does Sifflet support AI-driven use cases?

Yes, Sifflet leverages AI to enhance data observability with features like anomaly detection and predictive insights. This ensures your data systems remain resilient and can support advanced analytics and AI-driven initiatives. Have a look at how Sifflet is leveraging AI for better data observability here

How is AI shaping the future of data observability?

AI enhances data observability with advanced anomaly detection, predictive analytics, and automated root cause analysis. This helps teams identify and resolve issues faster while reducing manual effort. Have a look at how Sifflet is leveraging AI for better data observability here

What role does data observability play in modern data governance?

Data observability ensures data governance policies are adhered to by tracking data usage, quality, and lineage. It provides the transparency needed for accountability and compliance. Read more here.

Is data observability relevant for small businesses?

Yes! While smaller organizations may have fewer data pipelines, ensuring data quality and reliability is equally important for making accurate decisions and scaling effectively. What really matters is the data stack maturity and volume of data. Take our test here to find out if you really need data observability.

Still have questions?