Integrates with your %%modern data stack%%

Sifflet seamlessly integrates into your data sources and preferred tools, and can run on AWS, Google Cloud Platform, and Microsoft Azure.

Search an integration
Browse by category
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Want %%Sifflet%% to integrate your stack?

We'd be such a good fit together

Talk to an expert

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
Contact Us

Frequently asked questions

How does data observability help detect data volume issues?
Data observability provides visibility into your pipelines by tracking key metrics like row counts, duplicates, and ingestion patterns. It acts as an early warning system, helping teams catch volume anomalies before they affect dashboards or ML models. By using a robust observability platform, you can ensure that your data is consistently complete and trustworthy.
How can I track the success of my data team?
Define clear success KPIs that support ROI, such as improvements in SLA compliance, reduction in ingestion latency, or increased data reliability. Using data observability dashboards and pipeline health metrics can help you monitor progress and communicate value to stakeholders. It's also important to set expectations early and maintain strong internal communication.
Why is stakeholder trust in data so important, and how can we protect it?
Stakeholder trust is crucial because inconsistent or unreliable data can lead to poor decisions and reduced adoption of data-driven practices. You can protect this trust with strong data quality monitoring, real-time metrics, and consistent reporting. Data observability tools help by alerting teams to issues before they impact dashboards or reports, ensuring transparency and reliability.
Is there a way to use Sifflet with Terraform for better data governance?
Yes! Sifflet now offers an officially-supported Terraform provider that allows you to manage your observability setup as code. This includes configuring monitors and other Sifflet objects, which helps enforce data contracts, improve reproducibility, and strengthen data governance.
What’s coming next for the Sifflet AI Assistant?
We’re excited about what’s ahead. Soon, the Sifflet AI Assistant will allow non-technical users to create monitors using natural language, expand monitoring coverage automatically, and provide deeper insights into resource utilization and capacity planning to support scalable data observability.
What’s next for data observability at Sifflet?
We’re focused on solving the next generation of challenges, like hybrid environments, end-to-end data lineage tracking, and scaling data trust. Whether it's batch data observability or real-time pipeline monitoring, our mission is to help organizations build resilient, transparent, and future-proof data stacks.
How does Sifflet support data teams in improving data pipeline monitoring?
Sifflet’s observability platform offers powerful features like anomaly detection, pipeline error alerting, and data freshness checks. We help teams stay on top of their data workflows and ensure SLA compliance with minimal friction. Come chat with us at Booth Y640 to learn more!
How can organizations improve data governance with modern observability tools?
Modern observability tools offer powerful features like data lineage tracking, audit logging, and schema registry integration. These capabilities help organizations improve data governance by providing transparency, enforcing data contracts, and ensuring compliance with evolving regulations like GDPR.