Integrates with your %%modern data stack%%

Sifflet seamlessly integrates into your data sources and preferred tools, and can run on AWS, Google Cloud Platform, and Microsoft Azure.

Search an integration
Browse by category
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Want %%Sifflet%% to integrate your stack?

We'd be such a good fit together

Talk to an expert

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
contact our service customers

Frequently asked questions

How does integrating a data catalog with observability tools improve pipeline monitoring?
When integrated with observability tools, a data catalog becomes more than documentation. It provides real-time metrics, data freshness checks, and anomaly detection, allowing teams to proactively monitor pipeline health and quickly respond to issues. This integration enables faster root cause analysis and more reliable data delivery.
How is AI shaping the future of data observability?

AI enhances data observability with advanced anomaly detection, predictive analytics, and automated root cause analysis. This helps teams identify and resolve issues faster while reducing manual effort. Have a look at how Sifflet is leveraging AI for better data observability here

How has AI changed the way companies think about data quality monitoring?
AI has definitely raised the stakes. As Salma shared on the Joe Reis Show, executives are being asked to 'do AI,' but many still struggle with broken pipelines. That’s why data quality monitoring and robust data observability are now seen as prerequisites for scaling AI initiatives effectively.
How does Sifflet make data observability more accessible to BI users?
Great question! At Sifflet, we're committed to making data observability insights available right where you work. That’s why we’ve expanded beyond our Chrome extension to integrate directly with popular Data Catalogs like Atlan, Alation, Castor, and Data Galaxy. This means BI users can access real-time metrics and data quality insights without ever leaving their workflow.
What should I look for in terms of integrations when choosing a data observability platform?
Great question! When evaluating a data observability platform, it's important to check how well it integrates with your existing data stack. The more integrations it supports, the more visibility you’ll have across your pipelines. This is key to achieving comprehensive data pipeline monitoring and ensuring smooth observability across your entire data ecosystem.
How can organizations create a culture that supports data observability?
Fostering a data-driven culture starts with education and collaboration. Salma recommends training programs that boost data literacy and initiatives that involve all data stakeholders. This shared responsibility approach ensures better data governance and more effective data quality monitoring.
What role does data pipeline monitoring play in Dailymotion’s delivery optimization?
By rebuilding their pipelines with strong data pipeline monitoring, Dailymotion reduced storage costs, improved performance, and ensured consistent access to delivery data. This helped eliminate data sprawl and created a single source of truth for operational teams.
What made data observability such a hot topic in 2021?
Great question! Data observability really took off in 2021 because it became clear that reliable data is critical for driving business decisions. As data pipelines became more complex, teams needed better ways to monitor data quality, freshness, and lineage. That’s where data observability platforms came in, helping companies ensure trust in their data by making it fully observable end-to-end.