Integrates with your %%modern data stack%%
Sifflet seamlessly integrates into your data sources and preferred tools, and can run on AWS, Google Cloud Platform, and Microsoft Azure.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Results tag
Showing 0 results
More integration coming soon !
The Sifflet team is always working hard on incorporating more integrations into our product. Get in touch if you want us to keep you updated!
Oops! Something went wrong while submitting the form.

Still have a question in mind ?
Contact Us
Frequently asked questions
How does data observability help detect data volume issues?
Data observability provides visibility into your pipelines by tracking key metrics like row counts, duplicates, and ingestion patterns. It acts as an early warning system, helping teams catch volume anomalies before they affect dashboards or ML models. By using a robust observability platform, you can ensure that your data is consistently complete and trustworthy.
How can I track the success of my data team?
Define clear success KPIs that support ROI, such as improvements in SLA compliance, reduction in ingestion latency, or increased data reliability. Using data observability dashboards and pipeline health metrics can help you monitor progress and communicate value to stakeholders. It's also important to set expectations early and maintain strong internal communication.
Why is stakeholder trust in data so important, and how can we protect it?
Stakeholder trust is crucial because inconsistent or unreliable data can lead to poor decisions and reduced adoption of data-driven practices. You can protect this trust with strong data quality monitoring, real-time metrics, and consistent reporting. Data observability tools help by alerting teams to issues before they impact dashboards or reports, ensuring transparency and reliability.
Is there a way to use Sifflet with Terraform for better data governance?
Yes! Sifflet now offers an officially-supported Terraform provider that allows you to manage your observability setup as code. This includes configuring monitors and other Sifflet objects, which helps enforce data contracts, improve reproducibility, and strengthen data governance.
What’s coming next for the Sifflet AI Assistant?
We’re excited about what’s ahead. Soon, the Sifflet AI Assistant will allow non-technical users to create monitors using natural language, expand monitoring coverage automatically, and provide deeper insights into resource utilization and capacity planning to support scalable data observability.
What’s next for data observability at Sifflet?
We’re focused on solving the next generation of challenges, like hybrid environments, end-to-end data lineage tracking, and scaling data trust. Whether it's batch data observability or real-time pipeline monitoring, our mission is to help organizations build resilient, transparent, and future-proof data stacks.
How does Sifflet support data teams in improving data pipeline monitoring?
Sifflet’s observability platform offers powerful features like anomaly detection, pipeline error alerting, and data freshness checks. We help teams stay on top of their data workflows and ensure SLA compliance with minimal friction. Come chat with us at Booth Y640 to learn more!
How can organizations improve data governance with modern observability tools?
Modern observability tools offer powerful features like data lineage tracking, audit logging, and schema registry integration. These capabilities help organizations improve data governance by providing transparency, enforcing data contracts, and ensuring compliance with evolving regulations like GDPR.