Databricks
Sifflet icon

The Ultimate Observability Duo for the Modern Data Stack

Monitor. Trust. Act.

With Sifflet fully integrated into your Databricks environment, your data teams gain end-to-end visibility, AI-powered monitoring, and business-context awareness, without compromising performance.

Why Choose Sifflet for Databricks?

Modern organizations rely on Databricks to unify data engineering, machine learning, and analytics. But as the platform grows in complexity, new risks emerge:

  • Broken pipelines that go unnoticed
  • Data quality issues that erode trust
  • Limited visibility across orchestration and workflows

That’s where Sifflet comes in. Our native integration with Databricks ensures your data pipelines are transparent, reliable, and business-aligned, at scale.

Deep Integration with Databricks

Sifflet enhances the observability of your Databricks stack across:

Delta Pipelines & DLT

Monitor transformation logic, detect broken jobs, and ensure SLAs are met across streaming and batch workflows.

Notebooks & ML Models

Trace data quality issues back to the tables or features powering production models.

Unity Catalog & Lakehouse Metadata

Integrate catalog metadata into observability workflows, enriching alerts with ownership and context.

Cross-Stack Connectivity

Sifflet integrates with dbt, Airflow, Looker, and more, offering a single observability layer that spans your entire lakehouse ecosystem.

End-to-End Data Observability

  • Full monitoring across the data lifecycle: from raw ingestion in Databricks to BI consumption
  • Real-time alerts for freshness, volume, nulls, and schema changes
  • AI-powered prioritization so teams focus on what really matters

Deep Lineage & Root Cause Analysis

  • Column-level lineage across tables, SQL jobs, notebooks, and workflows
  • Instantly surface the impact of schema changes or upstream issues
  • Native integration with Unity Catalog for a unified metadata view

Operational & Governance Insights

  • Query-level telemetry, access logs, job runs, and system metadata
  • All fully queryable and visualized in observability dashboards
  • Enables governance, cost optimization, and security monitoring

Native Integration with Databricks Ecosystem

  • Tight integration with Databricks REST APIs and Unity Catalog
  • Observability for Databricks Workflows from orchestration to execution
  • Plug-and-play setup, no heavy engineering required

Built for Enterprise-Grade Data Teams

  • Certified Databricks Technology Partner
  • Deployed in production across global enterprises like St-Gobain and or Euronext
  • Designed for scale, governance, and collaboration

“The real value isn’t just in surfacing anomalies. It’s in turning observability into a strategic advantage. Sifflet enables exactly that, on Databricks, at scale.”
Senior Data Leader, North American Enterprise (Anonymous by Choice but happy)

Perfect For…

  • Data leaders scaling Databricks across teams
  • Analytics teams needing trustworthy dashboards
  • Governance teams requiring real lineage and audit trails
  • ML teams who need reliable, explainable training data

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
contact our service customers

Frequently asked questions

How do real-time alerts support SLA compliance?
Real-time alerts are crucial for staying on top of potential issues before they escalate. By setting up threshold-based alerts and receiving notifications through channels like Slack or email, teams can act quickly to resolve problems. This proactive approach helps maintain SLA compliance and keeps your data operations running smoothly.
Why is Sifflet focusing on AI agents for observability now?
With data stacks growing rapidly and teams staying the same size or shrinking, proactive monitoring is more important than ever. These AI agents bring memory, reasoning, and automation into the observability platform, helping teams scale their efforts with confidence and clarity.
How does Sifflet support collaboration across data teams?
Sifflet promotes un-siloed data quality by offering a unified platform where data engineers, analysts, and business users can collaborate. Features like pipeline health dashboards, data lineage tracking, and automated incident reports help teams stay aligned and respond quickly to issues.
What new investments is Sifflet making after the latest funding round?
We're excited to be investing in four key areas: enhancing our product roadmap, expanding our AI-powered capabilities, growing our North American presence, and accelerating hiring across teams. These efforts will help us continue leading in cloud data observability and better serve our growing customer base.
What role does containerization play in data observability?
Containerization enhances data observability by enabling consistent and isolated environments, which simplifies telemetry instrumentation and anomaly detection. It also supports better root cause analysis when issues arise in distributed systems or microservices architectures.
Can Sifflet support SLA compliance and data governance goals?
Absolutely! Sifflet supports SLA compliance through proactive data quality monitoring and real-time metrics. Its deep metadata integrations and lineage tracking also help organizations enforce data governance policies and maintain trust across the entire data ecosystem.
What does Sifflet's recent $12.8M Series A funding mean for the future of data observability?
Great question! This funding round, led by EQT Ventures, allows us to double down on our mission to make data more reliable and trustworthy. With this investment, we're expanding our data observability platform, enhancing real-time monitoring capabilities, and growing our presence in EMEA and the US.
Why is data reliability more important than ever?
With more teams depending on data for everyday decisions, data reliability has become a top priority. It’s not just about infrastructure uptime anymore, but also about ensuring the data itself is accurate, fresh, and trustworthy. Tools for data quality monitoring and root cause analysis help teams catch issues early and maintain confidence in their analytics.

Want to try Sifflet on your Databricks Stack?

Get in touch now!

I want to try