Mitigate disruption and risks
Optimize the management of data assets during each stage of a cloud migration.


Before migration
- Go through an inventory of what needs to be migrated using the Data Catalog
- Identify the most critical assets to prioritize migration efforts based on actual asset usage
- Leverage lineage to identify downstream impact of the migration in order to plan accordingly
.avif)
During migration
- Use the Data Catalog to confirm all the data was backed up appropriately
- Ensure the new environment matches the incumbent via dedicated monitors

After migration
- Swiftly document and classify new pipelines thanks to Sifflet AI Assistant
- Define data ownership to improve accountability and simplify maintenance of new data pipelines
- Monitor new pipelines to ensure the robustness of data foundations over time
- Leverage lineage to better understand newly built data flows


Still have a question in mind ?
contact our service customers
Frequently asked questions
How does the improved test connection process for Snowflake observability help teams?
The revamped 'Test Connection' process for Snowflake observability now provides detailed feedback on missing permissions or policy issues. This makes setup and troubleshooting much easier, especially during onboarding. It helps ensure smooth data pipeline monitoring and reduces the risk of refresh failures down the line.
Why is the new join feature in the monitor UI a game changer for data quality monitoring?
The ability to define joins directly in the monitor setup interface means you can now monitor relationships across datasets without writing custom SQL. This is crucial for data quality monitoring because many issues arise from inconsistencies between related tables. Now, you can catch those problems early and ensure better data reliability across your pipelines.
Will Sifflet cover any upcoming trends in data observability?
For sure! Our CEO, Salma Bakouk, will be speaking about the top data trends to watch in 2025, including how GenAI and advanced anomaly detection are shaping the future of observability platforms. You’ll walk away with actionable insights for your data strategy.
What makes observability scalable across different teams and roles?
Scalable observability works for engineers, analysts, and business stakeholders alike. It supports telemetry instrumentation for developers, intuitive dashboards for analysts, and high-level confidence signals for executives. By adapting to each role without adding friction, observability becomes a shared language across the organization.
How does Sifflet support traceability across diverse data stacks?
Traceability is a key pillar of Sifflet’s observability platform. We’ve expanded support for tools like Synapse, MicroStrategy, and Fivetran, and introduced our Universal Connector to bring in any asset, even from AI models. This makes root cause analysis and data lineage tracking more comprehensive and actionable.
Why is aligning data initiatives with business objectives important for Etam?
At Etam, every data project begins with the question, 'How does this help us reach our OKRs?' This alignment ensures that data initiatives are directly tied to business impact, improving sponsorship and fostering collaboration across departments. It's a great example of business-aligned data strategy in action.
How can a strong data platform support SLA compliance and business growth?
A well-designed data platform supports SLA compliance by ensuring data is timely, accurate, and reliable. With features like data drift detection and dynamic thresholding, teams can meet service-level objectives and scale confidently. Over time, this foundation enables faster decisions, stronger products, and better customer experiences.
Can Sifflet help me monitor data drift and anomalies beyond what dbt offers?
Absolutely! While dbt is fantastic for defining tests, Sifflet takes it further with advanced data drift detection and anomaly detection. Our platform uses intelligent monitoring templates that adapt to your data’s behavior, so you can spot unexpected changes like missing rows or unusual values without setting manual thresholds.