Sifflet icon

At Sifflet,
Data Means Business.

Data drives every strategic decision, guides innovation, and powers transformation. But how do companies ensure their data is reliable? How can they trust the insights that guide critical business choices? How do they turn raw information into actionable intelligence, high-performing products, and superior strategies? Enter Sifflet.

sifflet team at a convention
sifflet team at a convention

Who We Are

We are a data observability platform. 
We offer end-to-end oversight into the entire data stack, helping teams to uncover, prevent and overcome the technical and organizational obstacles that get in the way of better quality, more reliable data.

Our Mission

We help companies see data breakthroughs. Sifflet delivers smoother running data stacks by providing detailed oversight and solutions that reduce data breaks, improve team alignment and operations, and build confidence in the numbers. The result? Superior insights, value and products from data.

Sifflet team

Meet our Executive team

Sifflet was built by a data-obsessed team for
data-obsessed teams.

Chief Executive Officer
Salma Bakouk
Before founding Sifflet, Salma worked in quantitative sales & trading at Goldman Sachs, where she saw firsthand how unreliable data could undermine even the most sophisticated models. She holds two master’s degrees in Applied Mathematics and Computer Science from École Centrale Paris. Named among Europe’s Top 100 Women in Tech, Salma is a frequent speaker at leading industry events including Gartner D&A Summit and Big Data LDN. Outside of work, she loves running mountain trails, discovering new cities, and spending time with her dog always chasing the same clarity and balance she strives to bring to data.

Join Our Team

Sifflet team
sifflet's dog
sifflet at a convention
meeting of Sifflet team
Sifflet team
sifflet team at a convention
Sifflet team team work
Sifflet team

Frequently asked questions

Can Sifflet Insights help with data pipeline monitoring?
Absolutely! Sifflet Insights connects to your broader observability platform, giving you visibility into data pipeline health right from your BI dashboards. It helps track incidents, monitor data freshness, and detect anomalies before they impact your business decisions.
What makes Sifflet stand out when it comes to data reliability and trust?
Sifflet shines in data reliability by offering real-time metrics and intelligent anomaly detection. During the webinar, we saw how even non-technical users can set up custom monitors, making it easy for teams to catch issues early and maintain SLA compliance with confidence.
How does Sifflet support both technical and business teams?
Sifflet is designed to bridge the gap between data engineers and business users. It combines powerful features like automated anomaly detection, data lineage, and context-rich alerting with a no-code interface that’s accessible to non-technical teams. This means everyone—from analysts to execs—can get real-time metrics and insights about data reliability without needing to dig through logs or write SQL. It’s observability that works across the org, not just for the data team.
How do logs contribute to observability in data pipelines?
Logs capture interactions between data and external systems or users, offering valuable insights into data transformations and access patterns. They are essential for detecting anomalies, understanding data drift, and improving incident response in both batch and streaming data monitoring environments.
How do Service Level Indicators (SLIs) help improve data product reliability?
SLIs are a fantastic way to measure the health and performance of your data products. By tracking metrics like data freshness, anomaly detection, and real-time alerts, you can ensure your data meets expectations and stays aligned with your team’s SLA compliance goals.
Can data observability improve collaboration across data teams?
Absolutely! With shared visibility into data flows and transformations, observability platforms foster better communication between data engineers, analysts, and business users. Everyone can see what's happening in the pipeline, which encourages ownership and teamwork around data reliability.
How does data lineage enhance data observability?
Data lineage adds context to data observability by linking alerts to their root cause. For example, if a metric suddenly drops, lineage helps trace it back to a delayed ingestion or schema change. This speeds up incident resolution and strengthens anomaly detection. Platforms like Sifflet combine lineage with real-time metrics and data freshness checks to provide a complete view of pipeline health.
What tools can help me monitor data consistency between old and new environments?
You can use data profiling and anomaly detection tools to compare datasets before and after migration. These features are often built into modern data observability platforms and help you validate that nothing critical was lost or changed during the move.
Still have questions?

Want to join the team?

We're seeking driven individuals eager to roll up their sleeves and help make data observability everyone's business.