Sifflet icon

At Sifflet,
Data Means Business.

Data drives every strategic decision, guides innovation, and powers transformation. But how do companies ensure their data is reliable? How can they trust the insights that guide critical business choices? How do they turn raw information into actionable intelligence, high-performing products, and superior strategies? Enter Sifflet.

sifflet team at a convention
sifflet team at a convention

Who We Are

We are a data observability platform. 
We offer end-to-end oversight into the entire data stack, helping teams to uncover, prevent and overcome the technical and organizational obstacles that get in the way of better quality, more reliable data.

Our Mission

We help companies see data breakthroughs. Sifflet delivers smoother running data stacks by providing detailed oversight and solutions that reduce data breaks, improve team alignment and operations, and build confidence in the numbers. The result? Superior insights, value and products from data.

Sifflet team

Meet our Executive team

Sifflet was built by a data-obsessed team for
data-obsessed teams.

Chief Executive Officer
Salma Bakouk
Before founding Sifflet, Salma worked in quantitative sales & trading at Goldman Sachs, where she saw firsthand how unreliable data could undermine even the most sophisticated models. She holds two master’s degrees in Applied Mathematics and Computer Science from École Centrale Paris. Named among Europe’s Top 100 Women in Tech, Salma is a frequent speaker at leading industry events including Gartner D&A Summit and Big Data LDN. Outside of work, she loves running mountain trails, discovering new cities, and spending time with her dog always chasing the same clarity and balance she strives to bring to data.
Head of Sales
Joe Steadman
Joe is Head of Sales at Sifflet, focused on solving the data trust problem by helping teams detect broken data, understand business impact, and fix issues before they drive bad decisions. Previously at Matillion for 9 years, he led enterprise and strategic sales across EMEA, built and scaled high performing teams, consistently outperformed targets, and started as the company’s first sales hire, helping shape early go to market and partnerships.
Head of Operations
Rémi Bastien
Rémi is Head of Operations at Sifflet where he drives operational execution and scale. Previously at Contentsquare for nearly a decade, he led strategic cross functional projects and built operational excellence capabilities, spanning BI and KPIs, data governance and master data, knowledge management, tooling, process optimization, and PMO leadership.
Head of Solution Engineering
Alex Iorga
Alex is Head of Solutions Engineering and Customer Success at Sifflet, leading technical presales and post sales to drive smooth adoption and measurable outcomes. Previously at Deepomatic, he built and scaled Sales Engineering from first hire to Director, defined sales methodology with leadership, shaped the roadmap with product, built key partnerships, signed the company’s first North America customer, and expanded into LATAM. Earlier, he was a data and analytics consultant at Accenture in the UK, delivering BI and reporting programs and leading agile project work.
Head of Marketing
Romain Doutriaux
Romain Doutriaux is Head of Marketing at Sifflet, driving brand and pipeline with a sharp go to market lens. Previously, he led global marketing at Pigment, scaling inbound pipe gen, ABX and influence plays, and a 20 plus person team. Before that, he spent over seven years at Dataiku, moving from France Marketing Manager to VP EMEA Marketing, owning EMEA strategy across PR, digital, events, ABM, partnerships, and positioning in tight alignment with Sales and Product.

Join Our Team

Sifflet team
sifflet's dog
sifflet at a convention
meeting of Sifflet team
Sifflet team
sifflet team at a convention
Sifflet team team work
Sifflet team

Frequently asked questions

Why is data reliability more important than ever?
With more teams depending on data for everyday decisions, data reliability has become a top priority. It’s not just about infrastructure uptime anymore, but also about ensuring the data itself is accurate, fresh, and trustworthy. Tools for data quality monitoring and root cause analysis help teams catch issues early and maintain confidence in their analytics.
What’s the difference between data distribution and data lineage tracking?
Great distinction! Data distribution shows you how values are spread across a dataset, while data lineage tracking helps you trace where that data came from and how it’s moved through your pipeline. Both are essential for root cause analysis, but they solve different parts of the puzzle in a robust observability platform.
Why are traditional data catalogs no longer enough for modern data teams?
Traditional data catalogs focus mainly on metadata management, but they don't actively assess data quality or track changes in real time. As data environments grow more complex, teams need more than just an inventory. They need data observability tools that provide real-time metrics, anomaly detection, and data quality monitoring to ensure reliable decision-making.
How did Sifflet help Meero reduce the time spent on troubleshooting data issues?
Sifflet significantly cut down Meero's troubleshooting time by enabling faster root cause analysis. With real-time alerts and automated anomaly detection, the data team was able to identify and resolve issues in minutes instead of hours, saving up to 50% of their time.
What is the difference between data monitoring and data observability?
Great question! Data monitoring is like your car's dashboard—it alerts you when something goes wrong, like a failed pipeline or a missing dataset. Data observability, on the other hand, is like being the driver. It gives you a full understanding of how your data behaves, where it comes from, and how issues impact downstream systems. At Sifflet, we believe in going beyond alerts to deliver true data observability across your entire stack.
What’s the first step when building a modern data team from scratch?
The very first step is to set clear objectives that align with your company’s level of data maturity and business needs. This means involving stakeholders from different departments and deciding whether your focus is on exploratory analysis, business intelligence, or innovation through AI and ML. These goals will guide your choices in data stack, platform, and hiring.
What are the key components of an end-to-end data platform?
An end-to-end data platform includes layers for ingestion, storage, transformation, orchestration, governance, observability, and analytics. Each part plays a role in making data reliable and actionable. For example, data lineage tracking and real-time metrics collection help ensure transparency and performance across the pipeline.
Is there a way to use Sifflet with Terraform for better data governance?
Yes! Sifflet now offers an officially-supported Terraform provider that allows you to manage your observability setup as code. This includes configuring monitors and other Sifflet objects, which helps enforce data contracts, improve reproducibility, and strengthen data governance.
Still have questions?

Want to join the team?

We're seeking driven individuals eager to roll up their sleeves and help make data observability everyone's business.