Sifflet icon

At Sifflet,
Data Means Business.

Data drives every strategic decision, guides innovation, and powers transformation. But how do companies ensure their data is reliable? How can they trust the insights that guide critical business choices? How do they turn raw information into actionable intelligence, high-performing products, and superior strategies? Enter Sifflet.

sifflet team at a convention
sifflet team at a convention

Who We Are

We are a data observability platform. 
We offer end-to-end oversight into the entire data stack, helping teams to uncover, prevent and overcome the technical and organizational obstacles that get in the way of better quality, more reliable data.

Our Mission

We help companies see data breakthroughs. Sifflet delivers smoother running data stacks by providing detailed oversight and solutions that reduce data breaks, improve team alignment and operations, and build confidence in the numbers. The result? Superior insights, value and products from data.

Sifflet team

Meet our Executive team

Sifflet was built by a data-obsessed team for
data-obsessed teams.

Chief Executive Officer
Salma Bakouk
Before founding Sifflet, Salma worked in quantitative sales & trading at Goldman Sachs, where she saw firsthand how unreliable data could undermine even the most sophisticated models. She holds two master’s degrees in Applied Mathematics and Computer Science from École Centrale Paris. Named among Europe’s Top 100 Women in Tech, Salma is a frequent speaker at leading industry events including Gartner D&A Summit and Big Data LDN. Outside of work, she loves running mountain trails, discovering new cities, and spending time with her dog always chasing the same clarity and balance she strives to bring to data.

Join Our Team

Sifflet team
sifflet's dog
sifflet at a convention
meeting of Sifflet team
Sifflet team
sifflet team at a convention
Sifflet team team work
Sifflet team

Frequently asked questions

What makes Sifflet's approach to data pipeline monitoring unique?
We take a holistic, end-to-end approach to data pipeline monitoring. By collecting telemetry across the entire data stack and automatically tracking field-level data lineage, we empower teams to quickly identify issues and understand their downstream impact, making incident response and resolution much more efficient.
What does it mean to treat data as a product?
Treating data as a product means prioritizing its reliability, usability, and trustworthiness—just like you would with any customer-facing product. This mindset shift is driving the need for observability platforms that support data governance, real-time metrics, and proactive monitoring across the entire data lifecycle.
How does data transformation impact SLA compliance and data reliability?
Data transformation directly influences SLA compliance and data reliability by ensuring that the data delivered to business users is accurate, timely, and consistent. With proper data quality monitoring in place, organizations can meet service level agreements and maintain trust in their analytics outputs. Observability tools help track these metrics in real time and alert teams when issues arise.
What is dbt Impact Analysis and how does it help with data observability?
dbt Impact Analysis is a new feature from Sifflet that automatically comments on GitHub or GitLab pull requests with a list of impacted assets when a dbt model is changed. This helps teams enhance their data observability by understanding downstream effects before changes go live.
Is this integration helpful for teams focused on data reliability and governance?
Yes, definitely! The Sifflet and Firebolt integration supports strong data governance and boosts data reliability by enabling data profiling, schema monitoring, and automated validation rules. This ensures your data remains trustworthy and compliant.
Why is a user-friendly interface important in an observability tool?
A user-friendly interface boosts adoption across teams and makes it easier to navigate complex datasets. For observability tools, especially those focused on data cataloging and data discovery, a clean UI enables faster insights and more efficient collaboration.
How does Sifflet help with data drift detection in machine learning models?
Great question! Sifflet's distribution deviation monitoring uses advanced statistical models to detect shifts in data at the field level. This helps machine learning engineers stay ahead of data drift, maintain model accuracy, and ensure reliable predictive analytics monitoring over time.
How does Sifflet support data quality monitoring?
Sifflet makes data quality monitoring seamless with its auto-coverage feature. It automatically suggests fields to monitor and applies rules for freshness, uniqueness, and null values. This proactive monitoring helps maintain SLA compliance and keeps your data assets trustworthy and safe to use.
Still have questions?

Want to join the team?

We're seeking driven individuals eager to roll up their sleeves and help make data observability everyone's business.