


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
Can I trust the data I find in the Sifflet Data Catalog?
Absolutely! Thanks to Sifflet’s built-in data quality monitoring, you can view real-time metrics and health checks directly within the Data Catalog. This gives you confidence in the reliability of your data before making any decisions.
What are some key benefits of using an observability platform like Sifflet?
Using an observability platform like Sifflet brings several benefits: real-time anomaly detection, proactive incident management, improved SLA compliance, and better data governance. By combining metrics, metadata, and lineage, we help teams move from reactive data quality monitoring to proactive, scalable observability that supports reliable, data-driven decisions.
How does Sifflet help with data drift detection in machine learning models?
Great question! Sifflet's distribution deviation monitoring uses advanced statistical models to detect shifts in data at the field level. This helps machine learning engineers stay ahead of data drift, maintain model accuracy, and ensure reliable predictive analytics monitoring over time.
What can I expect to learn from Sifflet’s session on cataloging and monitoring data assets?
Our Head of Product, Martin Zerbib, will walk you through how Sifflet enables data lineage tracking, real-time metrics, and data profiling at scale. You’ll get a sneak peek at our roadmap and see how we’re making data more accessible and reliable for teams of all sizes.
How does Sifflet help scale dbt environments without compromising data quality?
Great question! Sifflet enhances your dbt environment by adding a robust data observability layer that enforces standards, monitors key metrics, and ensures data quality monitoring across thousands of models. With centralized metadata, automated monitors, and lineage tracking, Sifflet helps teams avoid the usual pitfalls of scaling like ownership ambiguity and technical debt.
Can I learn about real-world results from Sifflet customers at the event?
Yes, definitely! Companies like Saint-Gobain will be sharing how they’ve used Sifflet for data observability, data lineage tracking, and SLA compliance. It’s a great chance to hear how others are solving real data challenges with our platform.
How can I track the success of my data team?
Define clear success KPIs that support ROI, such as improvements in SLA compliance, reduction in ingestion latency, or increased data reliability. Using data observability dashboards and pipeline health metrics can help you monitor progress and communicate value to stakeholders. It's also important to set expectations early and maintain strong internal communication.
What kind of monitoring should I set up after migrating to the cloud?
After migration, continuous data quality monitoring is a must. Set up real-time alerts for data freshness checks, schema changes, and ingestion latency. These observability tools help you catch issues early and keep your data pipelines running smoothly.