Make Data %%Observability%% Everyone’s Business

Sifflet is an AI-augmented data observability platform built for data teams with business users in mind.

The premier %%virtual summit%% on data reliability, observability, and the future of trustworthy AI.

What Our Customers Say

See Sifflet in action!

Curious about how Sifflet can transform the way your team works with data?

Join our 30-min biweekly demo to see how data leaders, engineers, and platform teams use Sifflet to detect, resolve, and prevent issues—before they impact the business.

See Data Breakthroughs

Sifflet helps you remove the obstacles that stand in the way of superior insights, value, and products from data.

Supercharge Productivity 

Data engineers spend up 50% of their time on mundane reliability tasks and data analysts between 40 to 80% of their time vetting data quality. Sifflet augments your team’s capabilities and supercharges their productivity. 

Uplevel Data Reliability
and Quality 

See next-level improvements to data reliability and quality thanks to tools that make it easier and faster than ever to find and fix your data. 

Empower Ownership, Enable Self-Serve 

Sifflet ensures that your colleagues always know the health status of data, can give input to monitors, and take ownership of their data assets. Collaboration with data teams improves and it’s easier to enable data-mesh and self-serve.

TRACEABLE

Improve productivity and collaboration between engineers and data consumers

For everyone, working with and finding data becomes intuitive with a simple and automated UI, data discovery is simplified with a data catalog, and it is easy to connect with coding workflows.

Sifflet dashboard features overview
Sifflet dashboard data monitoring
Data Lineage

Troubleshoot

When data breaks, take charge. Use Sifflet’s robust tracing capabilities to map your data upstream, downstream and across data layers. You’ll gain insight into your data across the entire lifecycle and see rapid improvements to data quality that benefit the entire company.

Sifllet dashboard data quality monitoring
Data quality monitoring

Monitor

Monitor it all. And more.  Sifflet offers both out of the box and custom monitoring capability, so your teams can keep an eye on assets you know need observation…and even those you don’t.  Our AI optimizes your coverage and minimizes noise, getting smarter as it goes.  Your data’s reliability is reinforced, helping to grow confidence in your numbers. Now that’s performance. 

Built for %%Everyone%%

Sifflet helps you remove the obstacles that stand in the way of superior insights, value, and products from data. 

Data Leaders

Drive innovation and enable AI. With Sifflet, you can transform your data strategy, governance, and team productivity while ensuring efficient and scalable data infrastructure.

Read more

Data Engineers

Boost your productivity. Sifflet gives you end-to-end visibility into your architecture, assets, and pipelines. Advanced monitoring ensures you get the right alerts and lineage helps you get to resolution faster.

Read more

Data Users

No more data discrepancies. Sifflet ensures the highest levels of data quality. Your teams can make the best possible decisions for your company, unlocking new levels of performance that help you compete in the age of AI.

Read more

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
Contact Us

Frequently asked questions

What is the MCP Server and how does it help with data observability?
The MCP (Model Context Protocol) Server is a new interface that lets you interact with Sifflet directly from your development environment. It's designed to make data observability more seamless by allowing you to query assets, review incidents, and trace data lineage without leaving your IDE or notebook. This helps streamline your workflow and gives you real-time visibility into pipeline health and data quality.
What are some common data quality issues that can be prevented with the right tools?
Common issues like schema changes, missing values, and data drift can all be caught early with effective data quality monitoring. Tools that offer features like threshold-based alerts, data freshness checks, and pipeline health dashboards make it easier to prevent these problems before they affect downstream systems.
Why is an observability layer essential in the modern data stack, according to Meero’s experience?
For Meero, having an observability layer like Sifflet was crucial to ensure end-to-end visibility of their data pipelines. It allowed them to proactively monitor data quality, reduce downtime, and maintain SLA compliance, making it an indispensable part of their modern data stack.
What is data volume and why is it so important to monitor?
Data volume refers to the quantity of data flowing through your pipelines. Monitoring it is critical because sudden drops, spikes, or duplicates can quietly break downstream logic and lead to incomplete analysis or compliance risks. With proper data volume monitoring in place, you can catch these anomalies early and ensure data reliability across your organization.
Why is data observability important during cloud migration?
Great question! Data observability helps you monitor the health and integrity of your data as it moves to the cloud. By using an observability platform, you can track data lineage, detect anomalies, and validate consistency between environments, which reduces the risk of disruptions and broken pipelines.
What kind of visibility does a data observability platform provide?
A robust data observability platform like Sifflet gives you end-to-end visibility into your data ecosystem. This includes data freshness checks, schema changes, lineage tracking, and anomaly detection. It's like having a complete map of your data journey, helping you proactively manage quality and trust in your analytics.
Why is data distribution such an important part of data observability?
Great question! Data distribution gives you insight into the shape and spread of your data values, which traditional monitoring tools often miss. While volume, schema, and freshness checks tell you if the data is present and structured correctly, distribution monitoring helps you catch hidden issues like skewed categories or outlier spikes. It's a key component of any modern observability platform focused on data reliability.
Is this feature part of Sifflet’s larger observability platform?
Yes, dbt Impact Analysis is a key addition to Sifflet’s observability platform. It integrates seamlessly into your GitHub or GitLab workflows and complements other features like data lineage tracking and data quality monitoring to provide holistic data observability.

More data. %%Less Chaos.%%

If you want a smoother running stack,
let’s talk about what Sifflet can do for you. 

Contact Us