COMPARISON

Sifflet is better for business

The best data leaders know that data quality isn’t just a technical issue. They want tooling that allows technical and business users to engage with data observability. That’s why teams are switching from Monte Carlo to Sifflet.

THE BIG PICTURE

Augmented data quality for analytics and AI

Monte Carlo focuses on technical data quality, looking at freshness, accuracy, nulls, voids and more. Sifflet does this too, but it goes one step further—pulling in documentation and business context with input from downstream users to understand business critical data products and processes.

The result is truly augmented data quality for analytics and AI, because technical teams know exactly what to prioritize when it comes to monitoring and triaging.

Don't Solve Half the Problem.

If you want to tackle data quality just from a technical perspective, Sifflet isn’t for you. But if you want to reach augmented data quality for analytics and AI that truly brings business value to downstream users, Sifflet is the right choice for today… and tomorrow.

Monte Carlo
Programmatic & Infrastructure as Code Capabilities
No Code Options/ Intuitive UI
Automated Machine Learning of Data Environments
Business Impact Prioritized Alerts
AI-Powered Monitoring Wizard for Monitor Setup
Programmatic Monitoring (SQL based Monitoring, Monitoring-as-Code)
Dynamic Context Engine for RCA
Downstream Impact Analysis
Proactive Data Quality Mitigation 

There's no one size fits all.

When it comes to data observability platforms, there's no one size fits all.
Chat with one of our experts today to learn more about Sifflet and if it's the right option for you.

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data
"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist
"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam
" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios
"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links
"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Frequently asked questions

How is AI shaping the future of data observability?

AI enhances data observability with advanced anomaly detection, predictive analytics, and automated root cause analysis. This helps teams identify and resolve issues faster while reducing manual effort. Have a look at how Sifflet is leveraging AI for better data observability here

What are some common consequences of bad data?
Bad data can lead to a range of issues including financial losses, poor strategic decisions, compliance risks, and reduced team productivity. Without proper data quality monitoring, companies may struggle with inaccurate reports, failed analytics, and even reputational damage. That’s why having strong data observability tools in place is so critical.
How does Sifflet support data quality monitoring for business metrics?
Sifflet uses ML-based data quality monitoring to detect anomalies in business metrics and alert users in real time. This enables both data and business teams to quickly investigate issues, perform root cause analysis, and maintain trust in their data.
What role did data observability play in improving Meero's data reliability?
Data observability was key to Meero's success in maintaining reliable data pipelines. By using Sifflet’s observability platform, they could monitor data freshness, schema changes, and volume anomalies, ensuring their data remained trustworthy and accurate for business decision-making.
How does Etam ensure pipeline health while scaling its data operations?
Etam uses observability tools like Sifflet to maintain a healthy data pipeline. By continuously monitoring real-time metrics and setting up proactive alerts, they can catch issues early and ensure their data remains trustworthy as they scale operations.
Can SQL Table Tracer be integrated into a broader observability platform?
Absolutely! SQL Table Tracer is designed with a minimal API and modular architecture, making it easy to plug into larger observability platforms. It provides the foundational data needed for building features like data lineage tracking, pipeline health dashboards, and SLA monitoring.
What role does accessibility play in Sifflet’s UI design?
Accessibility is a core part of our design philosophy. We ensure that key indicators in our observability tools, such as data freshness checks or pipeline health statuses, are communicated using both color and iconography. This approach supports inclusive experiences for users with visual impairments, including color blindness.
Can data observability support better demand forecasting for retailers?
Absolutely. By integrating historical sales, real-time transactions, and external data sources like weather or social trends, data observability platforms enhance forecast accuracy. They use machine learning to evaluate and adjust predictions, helping retailers align inventory with actual consumer demand more effectively.
Still have questions?