Home
Pricing
%%Flexible pricing for %%every stage of data maturity
Build data trust at your own pace, from first monitors to enterprise-wide observability.
Entry
Growth
Enterprise
Number of Assets Monitored
Up to 500
Up to 1,000
1,000+ (scales flexibly)
Great for...
Small but mighty data teams
Cross-functional data teams
Large, regulated or complex organizations
Procurement Process
Self-Serve/Marketplaces
Sales-Assisted/Marketplaces
Direct Enterprise Sales or Channel
What you'll get
Core Data Observability & Catalog
(Fundamental metrics: freshness, schema, volume, custom metrics...)
Business-Aware Lineage & Impact Analysis
Automated Root-Cause Analysis
AI-Powered Incident Management
Advanced Governance
(RBAC, Audit logs...)
Data Observability Agent
SSO
Snowflake/BigQuery/S3 Data Sharing
Early Access to Upcoming Data Observability Agents
Pipeline Monitoring
Deployment
Deployment Type
SaaS
SaaS
SaaS/Hybrid/Self-hosted
SLA & Support
Standard
Priority
Enterprise (24/7, white-glove)
Onboarding & Success Program
Guided
Dedicated
Enterprise (including executive sponsorship)





What Our Customers Say
See Sifflet in action!
Curious about how Sifflet can transform the way your team works with data?
Join our 30-min biweekly demo to see how data leaders, engineers, and platform teams use Sifflet to detect, resolve, and prevent issues—before they impact the business.

Looking for more?

Customer Story
Automating Data Quality at Scale: Inside Penguin Random House’s Sifflet Implementation

Blogpost
Data Observability, Five Years In: Why the Old Playbook Doesn’t Work Anymore
.avif)
Checklist
Access this (really) free checklist that helps you pick a data observability platform that pays off in speed, trust & measurable impact.

Let's make it a thing
One form, one message, one step closer to data you can actually trust.
Get in touch
Still have a question in mind ?
Contact Us
Frequently asked questions
What role does data observability play in Shippeo's customer experience?
Data observability helps Shippeo’s Customer Experience team respond quickly to issues like missing GPS data or unusual spikes in transport orders. Real-time alerts empower them to act fast, communicate with customers, and keep service levels high.
What non-quantifiable benefits can data observability bring to my organization?
Besides measurable improvements, data observability also boosts trust in data, enhances decision-making, and improves the overall satisfaction of your data team. When your team spends less time debugging and more time driving value, it fosters a healthier data culture and supports long-term business growth.
How does Sifflet support AI-ready data for enterprises?
Sifflet is designed to ensure data quality and reliability, which are critical for AI initiatives. Our observability platform includes features like data freshness checks, anomaly detection, and root cause analysis, making it easier for teams to maintain high standards and trust in their analytics and AI models.
What should I look for when choosing a data integration tool?
Look for tools that support your data sources and destinations, offer automation, and ensure compliance. Features like schema registry integration, real-time metrics, and alerting can also make a big difference. A good tool should work seamlessly with your observability tools to maintain data quality and trust.
How does the new Fivetran integration enhance data observability in Sifflet?
Great question! With our new Fivetran integration, Sifflet now provides visibility into your data's journey even before it reaches your data platform. This means you can track data from its source through Fivetran connectors all the way downstream, offering truly end-to-end data observability.
Why is data reliability so critical for AI and machine learning systems?
Great question! AI and ML systems rely on massive volumes of data to make decisions, and any flaw in that data gets amplified at scale. Data reliability ensures that your models are trained and operate on accurate, complete, and timely data. Without it, you risk cascading failures, poor predictions, and even regulatory issues. That’s why data observability is essential to proactively monitor and maintain reliability across your pipelines.
Does Sifflet support AI-driven use cases?
Yes, Sifflet leverages AI to enhance data observability with features like anomaly detection and predictive insights. This ensures your data systems remain resilient and can support advanced analytics and AI-driven initiatives. Have a look at how Sifflet is leveraging AI for better data observability here
Can data lineage help with regulatory compliance like GDPR?
Absolutely. Governance lineage, a key type of data lineage, tracks ownership, access controls, and data classifications. This makes it easier to demonstrate compliance with regulations like GDPR and SOX by showing how sensitive data is handled across your stack. It's a critical component of any data governance strategy and helps reduce audit preparation time.
-p-500.png)
