Contact Us

Tame %%your%% stack.

If you want to learn more about data observability and what Sifflet can do for you, drop us a message below and we'll get back to you as soon as possible.

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
Contact Us

Frequently asked questions

How does Sifflet help with root cause analysis in Firebolt environments?
Sifflet makes root cause analysis easy by providing complete data lineage tracking for your Firebolt assets. You can trace issues back to their source, whether it's an upstream dbt model or a downstream Looker dashboard, all within a single platform.
How does Flow Stopper improve data reliability for engineering teams?
By integrating real-time data quality monitoring directly into your orchestration layer, Flow Stopper gives Data Engineers the ability to stop the flow when something looks off. This means fewer broken pipelines, better SLA compliance, and more time spent on innovation instead of firefighting.
Why is data observability so important for AI and analytics initiatives?
Great question! Data observability ensures that the data fueling AI and analytics is reliable, accurate, and fresh. At Sifflet, we see data observability as both a technical and business challenge, which is why our platform focuses on data quality monitoring, anomaly detection, and real-time metrics to help enterprises make confident, data-driven decisions.
Why should I care about metadata management in my organization?
Great question! Metadata management helps you understand what data you have, where it comes from, and how it’s being used. It’s a critical part of data governance and plays a huge role in improving data discovery, trust, and overall data reliability. With the right metadata strategy, your team can find the right data faster and make better decisions.
How does Sifflet support collaboration across data teams?
Sifflet promotes un-siloed data quality by offering a unified platform where data engineers, analysts, and business users can collaborate. Features like pipeline health dashboards, data lineage tracking, and automated incident reports help teams stay aligned and respond quickly to issues.
Can I customize how alerts are routed to ServiceNow from Sifflet?
Absolutely! You can customize routing based on alert metadata like domain, severity, or affected system. This ensures the right team gets notified without any manual triage, making your data pipeline monitoring more actionable and reliable.
How does field-level lineage improve root cause analysis in observability platforms like Sifflet?
Field-level lineage allows users to trace issues down to individual columns across tables, making it easier to pinpoint where a problem originated. This level of detail enhances root cause analysis and impact assessment, helping teams resolve incidents quickly and maintain trust in their data.
How does Sifflet support real-time metrics and proactive monitoring?
Sifflet’s observability platform is designed to provide real-time metrics and proactive monitoring through advanced data quality checks, anomaly detection, and custom health scores. This helps data teams catch issues before they escalate, ensuring your data products stay healthy and consistent.

Data Observability %%is Now%%

Make Data Observability Everyone’s Business Now

Contact Us